Skip Ribbon Commands
Skip to main content
Sign In
Navigate Up

Skip Navigation LinksThermal Ionization Mass Spectrometer

​​​​​​​

Instrument Description


TIMS is an analytical technique that requires the deposition of a sample onto a sample holder (filament in this case), whereafter the sample filament and ionizing filament are loaded into a carousel and placed into the instrument (in the ion source housing chamber). The ion source housing chamber is evacuated and the filaments are heated under controlled conditions to promote volatilization and ionization of the sample.

The ionized analyte is then directed through an accelerating section of the instrument and into a magnetic analyzing sector of the mass spectrometer for identification. The sample may arrive in any number of forms, but must be put into solution of sufficient concentration before it is deposited onto the sample filament. A solid sample will typically be dissolved in nitric acid. A sample that is too dilute will be evaporated down—either to reduce volume or bring to incipient dryness. A sample in an acid other than nitric will also be brought to incipient dryness and brought back to an appropriate volume by adding nitric acid. All work with radionuclides is conducted in an approved hood.

Prepared samples are loaded on filaments and inserted into the mass spectrometer for analysis. The TRITON TIMS ionizes the samples and measures the isotopic ratios of the element(s).

TIMS is widely viewed as the gold standard for low uncertainty isotopic analysis for Pu and U. Coupled with isotope dilution methods uncertainties as small as ±0.5% can be achieved allowing for precise and accurate isotopic measurements. It is the only method currently approved for safeguards and accountability measurements of Pu and U isotopics. Another advantage of TIMS is the small size of sample loadings (1 ng or less), effectively reducing exposure to the researcher and waste costs associated with disposal. 


Applications


  • For uranium and plutonium, simultaneously measures ions generated from the thermal ionization of sample.

  • Performs nuclear material accountability measurements by TIMS isotope dilution; can do isotopic analysis on a single element.

  • Makes very precise measurements of isotope ratios of elements that can be ionized thermally.

  • Comparison of the voltages corresponding to individual ion beams yields precise isotope ratios, which are used for isotope dilution mass spectrometry analyses.


Specifications


  • Samples typically are either dried in a 10-ml beaker or exist as liquids.

    • Samples may arrive in containers of various sizes up to a nominal volume of 100 ml, but are generally in, or are transferred to, 5- or 10-ml vials.

  • Liquid volumes are typically less than 100 ml.

  • The loading of samples is <10 µl on the filament with U and Pu amounts <5 mg.


  
  
  
Instrument
  
  
https://bios.inl.gov/BioPhotos/BrandonMiller.JPGhttps://mfctemp.inl.gov/SitePages/Biography.aspx?Title=Brandon%20MillerShielded sample preparation area; Shielded optical microscopy
  
https://bios.inl.gov/BioPhotos/JaymonBirch.jpghttps://mfctemp.inl.gov/SitePages/Biography.aspx?Title=Jaymon%20BirchThermal vacuum testing chambers
  
https://bios.inl.gov/BioPhotos/CraigDees.jpghttps://mfctemp.inl.gov/SitePages/Biography.aspx?Title=Craig%20DeesVibration testing
  
https://bios.inl.gov/BioPhotos/KevinGeddes.jpghttps://mfctemp.inl.gov/SitePages/Biography.aspx?Title=Kevin%20GeddesMass properties
  
https://bios.inl.gov/BioPhotos/KatelynWheeler.jpghttps://mfctemp.inl.gov/SitePages/Biography.aspx?Title=Katelyn%20WheelerPrecision gross and isotopic gamma scanning; Instron remote load frame
  
https://bios.inl.gov/BioPhotos/DavidSell.jpghttps://mfctemp.inl.gov/SitePages/Biography.aspx?Title=David%20SellFission gas measurement and analysis
  
https://bios.inl.gov/BioPhotos/CadChristensen.jpghttps://mfctemp.inl.gov/SitePages/Biography.aspx?Title=Cad%20ChristensenFuel accident condition simulator furnace
  
https://bios.inl.gov/BioPhotos/RandallFielding.jpghttps://mfctemp.inl.gov/SitePages/Biography.aspx?Title=Randall%20FieldingUranium extrusion; Metallic fuel line; Advanced Fuel Cycle Initiative glovebox; Glovebox advance casting system furnace; Metallic fuel line; Metallic fuel line
  
https://bios.inl.gov/BioPhotos/CurtisClark.jpghttps://mfctemp.inl.gov/SitePages/Biography.aspx?Title=Curtis%20ClarkUranium handling; Inert-radiological gloveboxes; Uranium handling
  
https://bios.inl.gov/BioPhotos/CoryBrower.JPGhttps://mfctemp.inl.gov/SitePages/Biography.aspx?Title=Cory%20BrowerNeptunium repackaging glovebox; Transuranic breakout glovebox
  
https://bios.inl.gov/BioPhotos/DeanPeterman.JPGhttps://mfctemp.inl.gov/SitePages/Biography.aspx?Title=Dean%20PetermanCobalt-60 gamma irradiator
  
https://bios.inl.gov/BioPhotos/larryevens.JPGhttps://mfctemp.inl.gov/SitePages/Biography.aspx?Title=Larry%20EvensTransuranic surveillance glovebox line; Cell area
  
https://bios.inl.gov/BioPhotos/danieljadernas.JPGhttps://mfctemp.inl.gov/SitePages/Biography.aspx?Title=Daniel%20JadernasFEI Quanta 3D FEG dual-beam SEM FIB
  
https://bios.inl.gov/BioPhotos/Jan-FongJue.JPGhttps://mfctemp.inl.gov/SitePages/Biography.aspx?Title=Jan-Fong%20JueJEOL JSM-7000f SEM; Gatan precision etching and coating system; Gatan precision ion polishing systems II; Gatan precision ion polishing systems
  
https://bios.inl.gov/BioPhotos/Cheng%20Sun.JPGhttps://mfctemp.inl.gov/SitePages/Biography.aspx?Title=Cheng%20SunJEOL JEM 2010 STEM
  
https://bios.inl.gov/BioPhotos/KarenWright.JPGhttps://mfctemp.inl.gov/SitePages/Biography.aspx?Title=Karen%20WrightShielded Cameca SX100R EPMA
  
https://bios.inl.gov/BioPhotos/Danielmurray.JPGhttps://mfctemp.inl.gov/SitePages/Biography.aspx?Title=Daniel%20MurrayShielded FEI QUANTA 3D FEG
  
https://bios.inl.gov/BioPhotos/lingfenghe.JPGhttps://mfctemp.inl.gov/SitePages/Biography.aspx?Title=Lingfeng%20HeFEI Titan ChemiSTEM FEG-STEM
  
https://bios.inl.gov/BioPhotos/mukeshbachhav.JPGhttps://mfctemp.inl.gov/SitePages/Biography.aspx?Title=Mukesh%20BachhavShielded FEI Helios dual-beam SEM-plasma FIB
  
https://bios.inl.gov/BioPhotos/KevinTolman.jpghttps://mfctemp.inl.gov/SitePages/Biography.aspx?Title=Kevin%20TolmanX-ray diffraction; Micro X-ray diffractometer
  
https://bios.inl.gov/BioPhotos/fidelmadilemma.JPGhttps://mfctemp.inl.gov/SitePages/Biography.aspx?Title=Fidelma Di LemmaJEOL JSM-7000f SEM
  
https://bios.inl.gov/BioPhotos/CortneyPincock.jpghttps://mfctemp.inl.gov/SitePages/Biography.aspx?Title=Cortney%20PincockInductively coupled plasma-mass spectrometer
  
https://bios.inl.gov/BioPhotos/MatthewJones.jpghttps://mfctemp.inl.gov/SitePages/Biography.aspx?Title=Matthew%20JonesInductively coupled plasma-atomic emission spectrometer; Thermal Ionization Mass Spectrometer
  
https://bios.inl.gov/BioPhotos/MagenColeman.jpghttps://mfctemp.inl.gov/SitePages/Biography.aspx?Title=Magen%20ColemanMulti-collector-inductively coupled plasma-mass spectrometer
  
https://bios.inl.gov/BioPhotos/ScottWilde.jpghttps://mfctemp.inl.gov/SitePages/Biography.aspx?Title=Scott%20WildeGlovebox advance casting system furnace; Hot uniaxial press furnace
  
https://bios.inl.gov/BioPhotos/joeycharboneau.jpghttps://mfctemp.inl.gov/SitePages/Biography.aspx?Title=Joey%20CharboneauGas mass spectrometer; ELTRA CS-800; ELTRA ONH-2000
  
https://bios.inl.gov/BioPhotos/CynthiaAdkins.jpghttps://mfctemp.inl.gov/SitePages/Biography.aspx?Title=Cynthia%20AdkinsTube furnace; Differential scanning calorimeter; Simultaneous thermal analyzer; Pushrod dilatometer; Laser flash analyzer
  
https://bios.inl.gov/BioPhotos/JaredHorkley.jpghttps://mfctemp.inl.gov/SitePages/Biography.aspx?Title=Jared%20HorkleyMass Separator Laboratories
  
https://bios.inl.gov/BioPhotos/LeahSquires.jpghttps://mfctemp.inl.gov/SitePages/Biography.aspx?Title=Leah%20SquiresMicro X-ray diffractometer; X-ray diffraction; Hot uniaxial press furnace
  
https://bios.inl.gov/BioPhotos/VivianCarioni.jpghttps://mfctemp.inl.gov/SitePages/Biography.aspx?Title=Vivian%20Carioni
1 - 30Next